河北邯郸美食网

看《经济学人》如何看待人工智能革命

来源:dfscx2014    发布时间:2019-04-30 19:00:40

2016年最热的关键词莫过于人工智能,最让人迷茫的也是人工智能。


人工智能是什么?它是下一次工业革命么?我们的有生之年,会面临一次职业危机吗?我们需要获得新的职业技能吗?这个答案恐怕是肯定的。


混沌研习社也非常关注这个问题。我们分别在2月18号与2月25号邀请了海银资本创始合伙人王煜全与科大讯飞消费者事业群总裁胡郁。这两位投资界与科技界的实力派,话题会聚焦在人工智能的发展历程与最新的进展,以及产业界如何拥抱这一次智能革命。


在这两次大课之前,我们挑选了《经济学人》的这篇重磅文章——《从技术、就业、教育、政策、道德五大维度剖析人工智能革命》。面对如此复杂的问题,我们需要一次长阅读,也需要一次深思考。


本文经机器之心(微信公众号:almosthuman2014)授权转载,转载请联系原公众号授权。


文|机器之心编译

参与:盛威、黄清纬、吴攀、Gabrielle、李亚洲、Chen Xiaoqing


《经济学人》杂志的封面报道将人工智能对世界的影响和 19 世纪工业革命联系起来,文章提到工业革命时人们提出了一个著名的“机器问题”(Machinery Question),意思是机器的大规模应用是否会让工人大规模失业。


而随着人工智能技术的发展,这个问题又被人提了出来。


 

机器问题重现

人工智能会导致大面积失业

甚至让人类灭绝吗


有些人害怕机器会抢走所有人的工作,有选择地让少数人受益,并最终彻底颠覆社会。在历史上,类似的一幕曾出现过。


两个世纪前,工业化的浪潮席卷英国,与今天同样的担忧曾经引发了激烈的争论。那个时候,人们不是说“工业革命”,大谈的是“机器问题”。


—1821年,经济学家 David Ricardo 第一个表达了这种看法,他重点关注“机器对于不同社会阶层的利益影响”,特别是“劳动阶级认为使用机器通常会不利于他们的利益”。


——1839年,当时最重要的社会评论员、苏格兰哲学家Thomas Carlyle 对所谓“机械恶魔”予以了抨击 ,他写道,“机械恶魔”破坏性的能力将会扰乱整个工人团体。


现在,这个“机器问题”正在担任曾经只有人才能胜任的各种任务。


科学家,经济学家和哲学家正在热议人工智能技术的潜在影响。这种影响可能是非常深刻的。因为人工智能技术,之前看起来不可能自动化的工作,包括放射科和法律工作,都同样面临着危机。


2013年, 牛津大学的 Carl Benedikt Frey 和 Michael Osborne 进行了一次调查研究,发现美国有 47% 的工作有很高的可能性会在不久后被“计算机资本取代”。


更近的一个报告是:美国美林银行预测,2025 年以前,人工智能“每年创造性破坏的影响”可能会达到14到33万亿美元,其中包括:


因人工智能实现了知识工作自动化,导致雇佣成本减少的9万亿美元

制造业和医疗护理开销减少的8万亿美元;

以及部署无人驾驶汽车和无人机后因效率提升减少的两万亿美元。


智囊机构麦肯锡全球研究院说:人工智能正在促进社会发生转变,这种转变比工业革命“发生的速度快 10 倍,规模大 300 倍,影响几乎大3000倍”。


跟两个世纪前的人们一样,很多人担心机器会让几百万人下岗,引发不平等问题和社会动乱。


Martin Ford 曾写过两本关于自动化威胁的畅销书,他担心中产阶级的工作将会消失,经济流动性(即个人、家庭或团体提高经济水平的活动)将停止,财阀们会“将自己关在封闭式小区或精英城市里,还可能有自动化军事机器人和无人机在旁保护。”


还有人则担心,人工智能会威胁人类的生存,因为超级智能计算机可能不会认同人类的目标,转而攻击创造它们的人类。


很多人表达过这类担忧,比如物理学家史蒂芬·霍金。更让人惊讶的是,伊隆·马斯克,火箭公司 SpaceX 和 电动汽车制造商 Tesla 的创始人,也有同样的想法。马斯克警告人类:“我们正在用人工智能召唤恶魔”。他的特斯拉汽车可以利用最新的人工智能技术实现自动行驶,但马斯克却担心未来的人工智能霸主可能会太过强大,失去人类的控制。


他说:“马可·奥勒留(罗马帝国贤君)当国王挺好的,但如果国王是卡利古拉(罗马帝国早期的典型暴君)情况就不太乐观了。”



有人看到风险,有人洞见机遇。


投资者正在不断涌入这个领域,科技巨头们则在不断收购人工智能创业公司,并争先吸引学术界最优秀的研究人才。


根据数据分析公司 Quid 的研究数据,在2015年,人工智能企业的成本创下85亿美元的记录,几乎为2010年的四倍。


投资公司 Playfair Capital 的 Nathan Benaich  说,2015 年人工智能企业的投资轮数比上一年多16%,而与此同时科技产业整体投资轮数减少了3%。Playfair Capital 是一家基金管理机构,该公司在人工智能的投资组合达到 25%。


“XX+人工智能”取代了“XX行业的Uber  ”,成为创业公司默认的商业模式。


谷歌、Facebook、IBM、亚马逊和微软都想方设法在云端建立人工智能服务的生态系统。


“这项技术将会用在各行各业中,只要这个行业有任意种类的数据,图像、语言等数据类型都可以。”MetaMind 的创始人 Richard Socher 说,“人工智能将遍地开花。”MetaMind 是一家人工智能创业公司,最近被云计算巨头 Salesforce 收购。


这意味着什么?本篇特别报道将会审视这项新科技的崛起,探索它对工作、教育、政策的潜在影响,思考它在道德和监管方面的作用。


AI 引发的担忧和热情不相上下,同时带来了很多问题,然而值得记住的是,其中的很多问题我们在以前都曾问过,并已经有了答案。


技术:从无法工作到神经网络

人工智能的繁荣基于传统与现代想法的结合


人工智能如何从刚开始的傲慢与失望,突然成为科技界最热门的领域呢?


人工智能这个术语最早被写在 1956 年的一份研究计划中,该计划声称“如果一个精心挑选的科学家小组花一个夏天一起研究,就能使机器解决各种人类无法解决的问题……”,从而实现重大的进步。


那被证明只是疯狂过度的乐观,人工智能虽然偶有突破,但其承诺的远比其所能提供的多得多。最终,大多研究者都避免使用这个术语,而更喜欢用“专家系统”或“神经网络”。


对大多数人而言,所有这些人工智能领域的进步,都将体现为日常使用的互联网服务的不断进步。


搜索引擎将得到更相关的结果,推荐将会更加准确。


Hassabis 预测说,几年之内,所有东西都将会嵌入某种程度上的智能。人工智能技术将让计算机接口变成对话式和有预测力的,而不只是简单的菜单和按钮。“而且对话式的交互让不能阅读书写和目前不能使用互联网的人也能使用计算机”,Bengio 说。


厚积多年,一朝薄发;机器将能够执行之前只有人类才能完成的任务。


自动驾驶汽车正快速变得越来越好,到某个时点,它们也许能够取代出租车司机,至少在市中心等受控环境中可以做到。送货无人机,不管是地上跑的还是天上飞的,可以与人类送货员竞争。


“改进后的视觉系统和机器人技术让机器人可以码放超市货架,在仓库中移动物体。而且还给意想不到的突破留下了很多余地”,Dixon 说。


其他人却很担心,担忧人工智能技术会让某些任务中现有的计算机化和自动化增压,就像 200 年前的蒸汽动力一样,让很多工人成了多余。


英国诗人 Robert Southey 宣称 :“蒸汽可怕地加剧着已经正在进行的过程,但太快了。”他担心“这强大之力的发现”已经在“我们知道如何正确使用它”之前到来。许多人对今天的人工智能也这么想。


对工作的影响:自动化与焦虑

更加智能的机器会导致大规模失业吗?


坐在旧金山的办公室里,Igor Barani 在屏幕上调出几张医学扫描结果。他是 Enlitic 公司的首席执行官,这是一家医疗创业公司,将深度学习应用于 X 光与 CT 扫描的图像分析。这是一个深度学习技术的明显应用。


深度学习的名气很大,主要因为在某些形式的图像识别上能力超过人类;大量的标签化训练数据需要消化,深度学习有着巨大的潜力让医疗变得更加准确和有效。


Barani 博士(曾经是一位肿瘤学家)指着从三个角度拍摄的患者肺部 CT 扫影。随着 Enlitic 的深度学习系统的加入,屏幕上出现了红色闪烁点,比对它们来看是否是血管、无害的成像物体或恶性的肺部肿瘤。最终系统会给出一个重点标注的特征以进一步调查。


在与三个放射科专家一起合作的测试中,Enlitic 系统在识别恶性肿瘤上优于人类50%,其假阴性率(没诊断出癌症)为零,相比之下人类则有着7%。Enlitic 的另一个系统,可以用来检查 X 射线扫描来检测腕关节骨折,有效地超出了人类的表现。




在2013年广为关注的一篇研究中,Carl Benedikt Frey 和 Michael Osborne 核查了702种职业的计算能力,并发现美国47%的工人都面临着工作自动化的风险。


尤其是,他们警告说大部分运输业和客运业(例如出租车司机和运货司机)和公关类(例如接待员与保安)“都有可能会被计算机所取代”,还有许多销售业与服务业人员(例如收银员、柜台人员、租赁人员、电话推销员和审计师等)也面临着工作被计算机取代的威胁。


他们总结道:“机器学习近期的发展会占据大量的职业分布,在近期面临风险的职业分布广阔。”后续的研究指出英国有35%的职业可能被取代(英国有许多人在创意领域工作,也因此难以被取代),在日本这个比例是49%。


经济学家正在担心“职业两极化”的风险,也就是说中层技术的工作(例如制造业)正在消失,而低等和高等工作在扩张。


实际上,工作可以被划分为两种常规职业:第一种即高薪水高技术的职业(建筑师,高级管理),还有低薪水低技术的职业(清洁工、快餐员)。


许多西方国家中层职业薪水的停滞都显示自动化已经开始产生影响——尽管这与外包的影响很难区分出来,后者也让许多常规工作(例如制造业和呼叫中心)搬迁到了发展中世界底薪国家中的常规工作。


圣路易斯联邦储备银行发表的数据显示,在美国,非常规认知型工作以及非常规手工型工作自1980年后逐步增长,而常规化工作则一直维持几乎不变。随着更多工作自动化,这种趋势很可能会延续下去。




在更近的例子中,人们期望自动取款机将接替一些日常任务,取代银行出纳员的工作, Bessen 指出,事实上从1988 年到2004年,美国每个银行支行的出纳员平均数量已经从20 人降低到了 2004 年的 13 人。


这减少了运营一家支行的成本,让银行可以开设更多支行以响应客户的需求。城市银行支行的数量同期上升了 43%,所以总体上雇员的数量增加了。


ATM 并没有摧毁工作,而是改变了银行雇员的工作组合——让他们远离了日常任务,进入到了机器不能做的销售和客服领域。


那么谁是正确的:是悲观者?他们多是技术人员,他们认为这是一次不同于以往,机器将真正夺走所有工作;还是乐观者?他们多是经济学家和历史学家,他们坚持认为技术终将创造更多工作。


而事实可能介于两者之间。


人工智能不会导致大规模失业,但它会加速与计算机相关的自动化趋势,像之前技术改变扰乱劳动力市场一样,并要求工作者比以往更快地学习新技能。


Bessen 预计会有一次“艰难转型”,而不是“尖锐地打破历史”。但尽管人们表达了广泛不同的意见,但几乎所有人都同意这个处方:公司和政府将需要想办法让工作者更容易掌握转换工作所需的新技能。


这将在悲观者看法正确的事件中提供更好的防御,同时预防比乐观者所预计的人工智能的更快和更重大的影响。


教育和政策:你会失业还算是变得富有?

人工智能将会给教育、福利和地缘政治的政策制定者带来的影响


教育


2011 年 7 月,拥有多个头衔的斯坦福大学教授 Thrun 在 YouTube 上发布了一段短视频,宣布他和他的同事 Peter Norvig 正在使他们的“人工智能入门”课程可以在网上免费观看。


到 10 月份该课程开始的时候,来自 190 个国家的 160,000 人报名参加了该课程。


与此同时,另一位斯坦福教授吴恩达也将自己的一门关于机器学习的课程免费发布到了网上,有 100,000 人参加了这个课程。这两个课程都持续 10 周。


最后,有 23,000 人完成 Thrun 的课程,13,000 人完成了吴恩达的课程。


这样的在线课程,以及短视频讲座、学生的在线讨论板块、课程成绩评级的自动系统,变成了众所周知的大规模开放式在线课程(MOOC)。


2012 年,Thrun 创立了在线教育创业公司 Udacity,吴恩达也联合创立了另一家在线教育创业公司 Coursera。


就在同一年,哈佛大学和麻省理工学院联合组建了 edX——一个非营利性的 MOOC 组织,该组织由 MIT 人工智能实验负责人 Anant Agarwal 所领导。


一些人认为 MOOC 会取代传统的大学教育。最初围绕 MOOC 的炒作现在差不多也已经偃旗息鼓了(尽管已有数百万学生参加了某种形式的在线课程),但 MOOC 的繁荣说明了在线教育的巨大潜力。


Udacity、Coursera 和 edX 都是从人工智能实验室涌现出来的,这个事实凸显了人工智能研究社区希望对教育系统进行大改的信念。


Thrun 说他创立 Udacity 是将其作为“正在进行的人工智能革命的解药”——这场革命将催生对工作者新型工作技能的需求。


相似地,吴恩达认为:鉴于人工智能研究者的工作对劳动力市场的潜在影响,研究者“在应对和解决我们导致的问题上负有道德上的责任”;他说,Coursera 是他在这方面作出的贡献。


此外,人工智能技术在教育方面有很大的发展潜力。


根据每一个学生的情况各自调整课程,从而实现最轻松最高效的学习方法“适应性学习”多年前就应该出现了。但新的机器学习技术可能最终有望帮助实现这一目标。


吴恩达说,适应性学习对大量学生使用同一材料学习的情况最有效,因为这样可以收集到大量的数据。


在这方面的创业公司有 Geekie、Knewton、Smart Sparrow 和 DreamBox 等,教育行业的巨头也对此很有兴趣:2013 年 McGraw-Hill 买下了适应性学习系统 ALEKS;Pearson 最近宣布扩大了与 Knewton 的合作关系。


“老系统将不得不进行认真的修改”,美国西北大学的 Joel Mokyr 指出,教育系统鼓励专业化,这样学生就能在越来越少的主题上学到越来越多。


但随着知识过时的速度越来越快,重要的是要学会再学习(relearn)。Mokyr 认为当下的教育像粘土——“塑造它,烘烤它,然后就定型了”。


未来,随着越来越多任务变得自动化,人类技能显得最有价值的任务会不断变化。“你必须终生学习——很长时间来显然都是这样”,吴恩达说,“你在大学里学到的东西不足以让你继续前进 40 年。”

政策政治


担忧人工智能和自动化,也有人呼吁建立一张安全网,让人们免受劳动力市场动乱的影响。


尤其是一些人工智能评论者认为应该建立一套福利系统,让每个人都享有保障基本生存的收入(比如说一年 1 万美元?)


类似的想法在工业革命时也由 Thomas Paine 和 John Stuart Mill 等一些人提出过。其基本思想是:人们做得更多,收入增加,福利不会减少,这样人们就会愿意去做事。


这会让人们能自由决定自己希望做什么,活在失业中接受合适的再培训。很多预言会有终极工作破坏的人都认为可以把这个情况用来保持消费型经济和支持非劳动人口。如果大部分工作都被自动化取代了,我们就将需要一种重新分配财富的可选机制。


与改革教育系统相比,保障基本收入似乎更简单、更有吸引力。


这个想法在技术行业内享有广泛支持:创业孵化器 Y-Combinator 甚至还支持着加利福尼亚州奥克兰市的一项对该想法的研究。


其总裁 Sam Altman 认为基本保障收入可以确保“向未来工作的平稳过渡”。看起来似乎是一个未来乌托邦,但一些怀疑论的观点认为这会导致抑制技术造成的不平等和抱怨,从而让极客能发明无拘束的未来。


Altman 先生说,“根据他的经验,技术人会支持基本收入保障的想法。


但基本收入保障的前提是要有收入,这就将意味着更高的税收。此外因为人们本身的财富水平和各地的消费水平不一样,公平性方面也难以得到保证。


而且还有人认为保障基本收入事实上会抑制人们接受再训练,催生一个不愿意劳动(而不是不能劳动)的“懒人”群体;从而加重纳税人的负担。


芬兰和荷兰等富裕国家计划在明年开始有限地试验基本收入政策,而其它较为贫穷的国家显然从没考虑过这样的事。自动化的发展对地缘政治的影响也将逐渐显现。


MIT 的 David Autor 说,自动化对发展中经济体的影响比对富裕经济体的影响更大,因为发展中经济体有更高比例的体力劳动工作:低工资的工人制造廉价的产品、在客服中心提供廉价的服务、在国内或海外做建筑工作……


如果自动化使发达国家能在这些方面自给自足,它们对发展中国家提供的产品和服务的需求就越少——发展中国家将失去在这些方面的比较优势,而与此同时,机器人和人工智能的技术和专利也基本上都掌握在发达国家手里。


自动化可能会让发达国家通过全面工业化断掉贫穷国家的发展机会。


经济学家常谈论“过早去工业化”;哈佛大学的 Dani Rodrik 指出第一次世界大战前英国的制造业就业人数达到了峰值的 45%,而巴西、印度和中国的制造业就业人数比例已经度过了峰值,却还没超过 15%。


这是因为制造业已经远比过去自动化了。据花旗银行和牛津大学马丁学院的一份报告指出,中国已经取代美国成为了第一大工业自动化市场。


然而对于非洲和南美的其它一些新兴经济体而言,自动化却并不是好消息,它们再也无法通过“农田到工厂”的劳动力转移模式来推动经济增长了,它们必须寻找新的增长模式。


乔治·梅森大学经济学家 Tyler Cowen 说:如果没有制造业的工作构成中产阶层,这些国家的“核心经济结构中将出现非常高的收入不平等”。


道德:弗兰肯斯坦的回形针

技术专家不相信人工智能会失去控制,但还是会有道德是上的忧虑


随着《末日侵袭》这部电影情节的发展,它看起来也没有那么可怕。


所谓的“回形针最多化”(paperclip maximiser)是牛津大学哲学家 Nick Bostrom 提出的一个思维实验。


这个实验假设一个人工智能能够希望能收集尽可能多的回形针。它会想尽一切办法来收集回形针,并且会通过自我升级来找到收集回形针的新方法,它还会反抗一切阻止它做这件事情的企图。


最后它“把整个地球和一部分宇宙空间都变成了一个回形针制造工厂”。


这种明显非常愚蠢的试图想表达一个非常严肃的观点:人工智能不需要人类一样的行为和心理动机。


它们可能不会出现人类常会犯的错误和偏差,但是会犯别的错误,例如执着于回形针。


它们的目标已开始可能看起来是无害的,但如果人工智能能够自我复制并升级自己的性能就会非常危险了。


即使是一个运行在一台不联网的计算机上的“被束缚的超级人工智能”也会竭尽全力地劝说它的主人让他获得自由。先进的人工智能不仅仅是一门新技术,而是一个对人类的威胁,Bostrom 说。


机器能够自己独立运行并不是一个新鲜想法,英国作家玛丽·雪莱在 1818 年就在她的小说《弗兰肯斯坦》中提出过这个想法。


但直到 1965 年,人们才提出这种能够不断自我升级的人工智能概念。


但最近人们在人工智能方面取得的进展又引起了新的担忧,Bostrom 就是一个人工智能威胁论的知名倡导者,他更喜欢把人工智能叫做“超级智能”,这也是他的新书的书名。



一些人工智能研究者给出了几个理由来证明为什么人们没必要恐惧人工智能,最起码是在当前阶段。


所以一定要让你的商业模式可防御,非常重要,怎么来衡量可防御?

1

吴恩达曾说过智能和感性能力以及意识是不同的


在 IBM 的人工智能道德小组工作的 Farancesca Rossi 也说过,人工智能“总有一天会觉醒并获得自己的思想”的想法并不现实。

2

所谓的“智能爆发”也是不可能出现的


因为这需要一个人工智能在比它的前一个版本的智能升级更短的时间内升级出新的版本。但是大多数计算问题,即使是比人工智能简单得多的,在规模化的的时候也需要花很长的时间。

3

即使机器能够从经验和环境中学习,它们也不会总在学习


例如一辆自动驾驶汽车并不是在每次驾驶的时候都在进行训练。


相反地,深度学习系统在神经网络中建立一个执行特定任务的计算模型也需要花上好几天时间。这个模型可以被应用到一个执行机器中,例如汽车、无人机、app或者其他的地方。


但是这些汽车和无人机并不能在实际工作时学习,相反地,他们在实际工作中得到的数据会被传回后方来改进模型,然后模型又会被再次应用。


因此一个单一的系统不会在环境中学到“坏行为”,因为它在环境中并没有学习。


结论:机械问题的答案

人工智能未来一瞥


之前看起来非常紧要的、亟待解决的原始的机器问题,最终将自我解决。


尽管 David Ricardo 以及其他人都表达过「机器取代人类劳力可能致使人口冗余」这样的恐惧,机械化的总体影响将会是创造史无前例规模的职位。


机器让个人工作者能生产更多产品,降低大量商品的价格,扩大需求并且将需要更多工人。全新的工作职位将被创造出来,对机器进行监督。


随着公司变得更大,他们将会需要更多经理、会计和其他职位。而且随着铁路、电信、电气的到来,全新的、前所未有的、我们难以想象的产业将会涌现。


诚然,所有这些都将花费一段时间。当一些工作消失的时候,工业化会造成普遍的劳力市场聚变,其他改变难以知晓,而全新的职位将会出现。


工厂内的情况曾经非常糟糕,从显著的工人收入变化上反映出经济的增长需要几十年的时间,这种现象也就是我们所熟知的“恩格斯停顿”。


在人工智能发展缓慢而备受挫折的数年之后,现在很多人却认为它前进过快,这是一件非常讽刺的事。然而,一份冷静的评估表明我们应该欢迎人工智能,而不是害怕人工智能。


在 19 世纪 40 年代,John Stuart Mill 写道,“将来我们会看到,机械发明对劳工的最终好处是毋庸置疑的”。


未来可能会有一位经济学家同样如此描述人工智能的好处,并不只是对劳工而言,而是对每一个人而言。


R

  eading

推荐阅读 (点击文章标题,直接阅读) 





点击下方“阅读原文”,亦可入社听课!